Wave packet spreading and localization in electron-nuclear scattering.
نویسندگان
چکیده
The wave packet molecular dynamics (WPMD) method provides a variational approximation to the solution of the time-dependent Schrödinger equation. Its application in the field of high-temperature dense plasmas has yielded diverging electron width (spreading), which results in diminishing electron-nuclear interactions. Electron spreading has previously been ascribed to a shortcoming of the WPMD method and has been counteracted by various heuristic additions to the models used. We employ more accurate methods to determine if spreading continues to be predicted by them and how WPMD can be improved. A scattering process involving a single dynamic electron interacting with a periodic array of statically screened protons is used as a model problem for comparison. We compare the numerically exact split operator Fourier transform method, the Wigner trajectory method, and the time-dependent variational principle (TDVP). Within the framework of the TDVP, we use the standard variational form of WPMD, the single Gaussian wave packet (WP), as well as a sum of Gaussian WPs, as in the split WP method. Wave packet spreading is predicted by all methods, so it is not the source of the unphysical diminishing of electron-nuclear interactions in WPMD at high temperatures. Instead, the Gaussian WP's inability to correctly reproduce breakup of the electron's probability density into localized density near the protons is responsible for the deviation from more accurate predictions. Extensions of WPMD must include a mechanism for breakup to occur in order to yield dynamics that lead to accurate electron densities.
منابع مشابه
Two - center interferences in photoionization of a dissociating H 2 + molecule
We analyze two-center interference effects in the yields of ionization of a dissociating hydrogen molecular ion by an ultrashort vuv laser pulse. To this end, we performed numerical simulations of the time-dependent Schrödinger equation for a H2+ model ion interacting with two time-delayed laser pulses. The scenario considered corresponds to a pump-probe scheme, in which the first (pump) pulse ...
متن کاملScattering of intense laser radiation by a single-electron wave packet
A quantum theoretical description of photoemission by a single laser-driven electron wave packet is presented. Energy-momentum conservation ensures that the partial emissions from individual momentum components of the electron wave packet do not interfere when the driving field is unidirectional. In other words, light scattering by an electron packet is independent of the phases of the pure mom...
متن کاملSteering the electron in H2(+) by nuclear wave packet dynamics.
By combining carrier-envelope phase (CEP) stable light fields and the traditional method of optical pump-probe spectroscopy we study electron localization in dissociating H2(+) molecular ions. Localization and localizability of electrons is observed to strongly depend on the time delay between the two CEP-stable laser pulses with a characteristic periodicity corresponding to the oscillating mol...
متن کاملA fluctuating fractal nanoworld
The localization of elementary excitations in complex media is one of the most universal and important problems of physics, spanning the range from electrons in disordered materials to acoustic waves in nonuniform media, to light waves in the presence of random scatterers. One of the most fundamental effects in this wide class of phenomena is Anderson localization [1]. This effect is predicted ...
متن کاملStrong-field photoionization and emission of light in the wave-packet-spreading regime.
Barrier suppression ionization and wave-packet-spreading models are used to describe to first order in a perturbative expansion the quantum-mechanical interaction between a photodetached electron wave packet and its parent nucleus in the presence of a very strong laser field. The attraction between the wave packet and the nucleus (the first-order approximation to the dipole acceleration) is int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2013